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A preliminary investigation of the interaction of internal 
gravity waves with a steady shearing motion 
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Preliminary experimental results are presented which describe the interaction of an 
internal-wave field with a steady shearing motion. The results are primarily qualitative 
and presented in the form of photographs of shadowgraph images. Several internal- 
wave sources are used, and both critical- and non-critical-layer flows are examined. 
The results of these observations are interpreted in terms of several existing theories. 
For critical-layer flows the primary result is that virtually none of the internal-wave 
momentum flux penetrates the critical-level region, and under certain conditions a 
critical-layer instability develops resulting in the generation of turbulence. Such wave- 
induced turbulence is also observed for certain non-critical-layer flows and is believed 
to  be the result of a convective instability. 

1. Introduction 
Within about the past decade, as a result of numerous and extensive field-measure- 

ment programmes, a wealth of information has been obtained regarding the nature 
of the subsurface oceanic environment. One of the more difficult tasks in these investi- 
gations has been the characterization of the ambient levels of shear which exist in 
the upper regions of the ocean arising from such processes as large-scale geostrophic 
motions (eddies), intrusions and low-frequency inertial waves. The measurements of 
Sanford (1975), made during the Mode 1 experiment, reveal that  shear levels 
au/ax = 0(10-3-10-2 s-l) are not an uncommon feature of the thermocline region, 
with the bulk of this shear being attributable to internal waves on inertial scales. 
I n  terms of Richardson numbers, these data show, at least at the Mode 1 measurement 
site, that  roughly 90 yo of the water column was characterized by gradient Richardson- 
number levels lying in the range $ < Ri c 4. It is clear that such levels of shear are 
apt to  have important dynamical effects upon the higher-frequency portion of the 
internal-wave spectrum. 

The intent of the present paper is to examine experimentally, albeit in a qualitative 
fashion (viu photographs of shadowgraph images), what effects the presence of a 
velocity field may have on an internal-wave field. In  a subsequent paper we will deal 
with the character of this flow field in a more quantitative manner. The experimental 
apparatus used in this investigation is a modified and scaled-up version of a device 
first discussed by Ode11 & Kovasznay (1971). The unique feature of this facility is 
its ability to generate a relatively steady shearing motion in a fluid which is con- 
tinuously stratified for time scales of a t  least 10 min and perhaps even longer. Much 
of the previous experimental work in this area has dealt with layered fluids but i t  will 
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FIGURE 1. ( a )  Schematic of thc strat.ificd shear-flow fttciht,y. 
( b )  Detail of the primping mechanism. 

be shown subsequently that many of the interesting features of the internal-wave/ 
mean-flow interaction may be exhibited only when the ambient medium has con- 
tinuous variations. 

The first series of experiments deal with the wave field generated by an oscillating 
cylinder in order to study the interaction of the mean flow with a simple constant- 
frequency disturbance. The remainder of the paper deals with internal-wave/shear 
interactions for both critical- and non-critical-layer flows. For this portion of the 
study two internal-wave sources were used, the first being a sinusoidally corrugated 
boundary of large horizontal ext.ent which was towed through the test section of the 
facility. The wave patterns generated by this monochromatic source are amenable to 
analytic calculation, and the resulting flow field is interpreted in terms of existing 
theory. In  addition, a towed circular cylinder was also used as an internal-wave source 
in order to study the character of an internal-wavelshear interaction subject to an 
internal-wave forcing which is broad-banded and spatially compact. 

2. Experimental apparatus 
The experiments to be described were performed in a newly developed stratified- 

shear flow facility which is shown schematically in figure 1 and photographically in 
figure 2. Basically, the facility consists of an annular tank having a test section of 
30 x 45 cm cross-section and 3 m in length which is continuously stratified using saline 
solutions. The fluid moves around the channel under the action of a pumping mecha- 
nism, depicted in figure 1 (b) ,  which was modelled after a device first discussed by 
Odell & Kovasznay (1971). Essentially, the pump consists of two vertical stacks of 
circular plates which counter-rotate and impart momentum to the incoming fluid 
while preserving the structure of the ambient stratification down to length scales 
comparable to the plate spacing (approx. 0.5 em). In the original model of Odell & 
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FIGURE 2.  Photographs of the stratified shear-flow facility : 
( a )  electronics, ( b )  shear-flow tank, (c )  detail of pump. 

12-2 



350 C. Ga,ry Koop 

FIGURE 3. Example of pulsed hydrogen-bubble wire trace used to measure the mean velooity 
profile. The total vertical scale in the figure is 4 em. For the most recent bubble trace the tick 
marks on the horizontal scale correspond tc  1 cm s-l. ThiP figure also shows the probe confignra- 
tion used in figure 25. 

Kovasznay viscous spin-up by the circular plates was used to accelerate the incoming 
fluid. I n  the present apparatus (which is considerably larger) this proved to be a some- 
what inefficient means of pumping the fluid. To alleviate this difficulty, flexible im- 
pellers were introduced in between the plates so that momentum is transferred to the 
incoming fluid under the action of a positive-displacement piston-type motion. With 
this modification, flow velocities in the range of 0-10 cm s-l are readily generated. 
For practical operation, however, maximum fluid velocities were typically less than 
5 cm s-l. Above this limit, turbulence produced by the pump and boundary layers on 
the bottom and sidewalls adversely affected the flow in the test section. For fluid 
velocities less than 5 cm s-l, however, the flow in the test section was quite laminar, 
and turbulent motions generated by the pumping action, turning vanes or sidewall 
boundary layers were rarely observed. We note here that these conclusions are 
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FIGURE 4.  Evolution of velocity profile measured using pulsed hydrogen-bubble wire. 
Profiles offset by 0.35 ern s-l. 

based upon observations of the flow field made with rather strong stratification 
( N  N 2.5 s-l). However, we have also operated the channel using significantly weaker 
stratification (fluid velocities of 2-5 em s-l and Brunt-VaisBla frequency N = 1-2 s-1) 
with a minimal amount of turbulence being observed. 

A second modification made to the original idea of Kovasznay was the introduction 
of a double-gearing system, coupled with two independent drive motors, which allows 
the upper halves of the two stacks to rotate differentially with respect to  the lower 
halves.? I n  this manner, a greater amount of momentum may be imparted to the fluid 
in (say) the upper half of the tank, so that a shearing motion in the fluid is generated. 
For most of the experiments to be described, we attempted to keep the fluid in the 
lower portion of the tank stationary and propel the upper-half fluid around the 
tank. As an interesting sidelight, we found that to maintain the lower half of the fluid 
stationary in the test section i t  was necessary to rotate the lower plates at a very 
slow rate in order to overcome pressure gradients presumably generated by a slight 
degree of baroclinicity. 

Velocity-profile measurements were made using a pulsed hydrogen-bubble wire 
generator, an example of which is shown in figure 3. This method was chosen primarily 
owing to its simplicity together with its ability to provide fairly detailed quantitative 
information about the vertical structure of the profile. One slight disadvantage of this 
technique is that  the bubbles are buoyant when they are swept off the wire. However, 
for steady flows and slow bubble-rise velocities the locus of the bubble path closely 
follows the mean velocity profile, the net effect being a bubble depopulation in the 
lower regions of the tank (which is almost quiescent, anyway). We remark here that 

t Structural considerations require tlrat hot11 halves bc rotated in the same direction, thus 
precluding counter -rotation. 
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FIGURE 5. ( a )  Overlay of velocity profiles for the same run at  four different elapsed times: 
-- 3 min; - - - 5 min; . * . . . 7 min; - . - 9 min. ( b )  Comparison of velocity profiles for two 
different runs a t  four values of elapsed time: -- initial run; - - - repeat run. (c )  Spanwise 

velocity distribution made using hot-film probes positioned at  three vertical locations. The high- 
frequency activity noted on these signals is du0 to the slight amount of wave motion on the 
free surface of the facility. -- traverse towards inner wall; - - - traverse towards outer wall. 
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FIGURE 5 ( c ) .  For legend see p. 352. 

initial attempts to measure the velocity profile with a traversing hot-film probe yielded 
very poor results due to  such difficulties as vibrations, nonlinear response, thermal 
variations in the ambient fluid and problems associated with measuring horizontal 
velocities with a probe that is moving in the vertical direction.? 

The results of the velocity-profile measurements made using the bubble wire re- 
vealed that for typical operating conditions the characteristic thickness of the sheared 
region was on the order of 5-10 cm. For the experiments to  be described this finite 
thickness associated with the sheared region was of crucial importance. We found, 
for example, that many of the interesting aspects of the internal-wave/mean-flow 
interaction occur in the neighbourhood of the critical layer. Had the critical layer been 
embedded in a region of large velocity and/or density gradient (e.g. a layered flow) 
i t  would have been difficult to differentiate between critical-layer effects and those 
associated with the large anomalies in the ambient medium. 

I n  addition to  the velocity profile, measurements were made of the vertical dis- 
tribution of density using a conductivity probe. The nonlinear response of this sensor 
to saline variations was eliminated using a polynomial linearization circuit. 

Finally, the internal waves generated by the various sources were visualized using 
the shadowgraph technique. The light source for these visualizations was a 100 W 
mercury lamp collimated using a 12 in. f /8 spherical mirror. 

Before discussing the results of the experimental investigation, it is worth while to 
describe briefly some of the characteristics of the flow field generated by this new 
facility, so that one may have an appreciation for the type of experiments which can 
be performed in the apparatus. Of particular concern in the early stages of the study 
was determining the degree to which t,he shear flow was steady and repeatable. To 

t Attempts to use a split-film probe to overcome the problem of vertical motion also proved 
fruitless, primarily due t o  the poor signal/noise characteristics of the differenced signal. 
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FIGURE 6. Evolution of the density profile. Distribution for t = 0 varies between p = 1.183 at 
the bottom to p = 1.021 at the top. Succeeding profiles offset by Ap = 0.061. -- initial run; 
. . . . .  repeat run. 

study the transient nature of the flow field, several tests were performed to  monitor 
the evolution of both the velocity and density profiles for running times of up to 10 min. 
Figure 4 shows the results of a series of velocity-profile measurements made a t  12 s 
intervals for a running time slightly in excess of 10 min. These profiles were traced 
by hand from photographs of the hydrogen-bubble-wire images. One sees from these 
data that, after some initial period of transience (lasting roughly 1-2 min), the flow 
field achieves a relatively steady profile. Fluid velocities in the upper layer are typically 
about 2.5-3 em s-l (for this particular test condition) and the fluid in the lower layer 
is nearly quiescent ( < 1 mm s-l). Between the upper and lower regions of the tank 
isashearlayerhavinga characteristic thickness of about 5 em and shear au/az E 0.5 s-l. 
The global Richardson number in this region is about Ri = 25. Figure 5(a),  which 
presents an overlay of four profiles a t  elapsed times of 3 , 5 , 7  and 9 min, clearly demon- 
strates the high degree of steadiness over this running time. The repeatability of these 
profiles is exhibited in figure 5 ( b ) .  Here the results of a repeat run, performed after the 
tank had been drained and refilled, are compared with those of the initial run. Although 
there is some degree of dissimilarity, the profiles are seen to agree reasonably well. 

Figure 5 (c) presents measurements of the cross-tank variation in the mean velocity, 
which were made a t  three vertical positions by slowly (approx. 1 mm s-1) traversing 
hot-film probes laterally across the tank. To provide some measure of repeatability, 
two such traverses were made.t The probes were then calibrated by towing them 
through quiescent fluid a t  various velocities. The rather prominent high-frequency 
oscillatory behaviour noted in this figure is due to a slight amount of surface-wave 

t During the second traverse a bubble attached itself to the uppermost probe, thus altering 
its calibration. This portion of the data has been deleted from the figure. 
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activity present in the tank. These surface waves are of extremely small amplitude 
( < 1 mm), but because of their long wavelengths (about 3-5 m) the wave-induced 
orbital velocities are appreciable. The most important feature to note in figure 5 (c) is the 
degree to which the mean horizontal velocity varies across the span of the test section. 
For the uppermost probe, we find that the centre-line velocity is about 2.9 cm s-l 
and varies from 2.5 cm s-l on the inside section of the annulus to about 3 cm s-l 
on the outside. The lowest probe varies from about 0.85cm s-l to 1.1 cms-l. 
Although undesirable, such span-wise flow variations are an almost unavoidable 
feature of such an annular geometry. To put these variations in perspective, though, 
the span-wise gradient of velocity a t  its maximum is about 0.03 s-l, which is an 
order of magnitude smaller than the vertical gradient of velocity, which is typically 
about 0-5 s-l, 

The corresponding evolution of the density profile, measured at  1 min intervals, 
is presented in figure 6, along with the results of a repeat run. One observes here that 
the initial linear density profile develops a slight bend in the centre of the channel 
after roughly 7 min of running. The cause of this change is believed to be due to 
the slight amount of mixing which occurs at the downstream exit of the pump (which 
is quickly suppressed by the buoyancy). It is significant to note, however, that the 
profile remains reasonably smooth throughout the duration of the test. Furthermore, 
most of the experiments to be described required only about 60-100 s to perform, 
and were usually completed within the first 5 min of running. We note, however, 
that such nonlinearity in the mean density profile could actually be beneficial in 
certain experiments where, for example, one might be interested in assessing the 
effects of vertical density structure on the wave field. Finally, one notes from figure 6 
that the repeat run is almost indistinguishable from the initial run. Thus, a t  least in 
terms of the density profile, the flow field generated by this facility is quite repeatable 
from run to run. 

3. Oscillating cylinder with shear 
The first experiments to be discussed extend the work of Mowbray & Rarity (1967) 

to include the effects of shear. Essentially, the experimental configuration consisted 
of a circular cylinder (2.54 cm diameter) which spanned the test section and oscillated 
- + 0.25 cm horizontally at a constant frequency ranging between 0.20 and 0.33 Hz. 
The density profile for these tests is shown in figure 7, where it is seen that for the most 
part of the profile is linearly dependent upon depth (Brunt-VaistCla frequency, 
N = 2.49 s-l), although near the top a sharp change in the gradient is observed. 

Before presenting the results of these experiments it is worth while to discuss 
briefly the character of the wave patterns one would anticipate, based upon the 
theory of linear internal waves.? The vertical-mode structure of a linear internal 
wave in an inviscid stratified shear flow is govered by the Taylor-Goldstein equation 
which may be written as 

as*(4 + &(z)  @z) = 0, (1)  

t The simple analysis presented here basically follows that given by Phillips (1966), with the 
exception that shear is introduced. 
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FIGURE 7.  Measured density profile for oscillating-cylinder experiments. 

where 

and the vertical velocity is assumed to have the form 

w(x, x ,  t )  = a(z) ei(kzz*mt) + C.C. 

The _+ notation in the above expression is introduced in order to distinguish between 
waves travelling in the positive or negative direction. 

If Q ( z )  is assumed to be a slowly varying function, then the WKB approximation 
is valid and the solution of equation ( 1 )  is given by 

where 6(z) is the phase function. A vertical wavenumber kB may be defined as 
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frequency; ( c )  in a shear flow with constant Brunt-Vdisalti frequency. 
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where vector notation for t,he wavenumber and mean flow velocity has been introduced. 
This solution is valid provided that 

The dispersion relation, given by equation (3)) may be used to trace the ray patterns 
generated by the oscillating cylinder. Several cases are c0nsidered.t 

Case A :  0 = 0, N = const. = No. This is the case discussed in detail by Mowbray 
& Rarity (1967). The dispersion relation is given by the well known expression * 

where 8 is the angle between the wave ray and the horizontal. The ray pattern for 
this case is illustrated schematically in figure 8 ( a ) .  Note that for w < No the group 
velocity is almost horizontal, but rotates towards the vertical as w -+ No. 

Case B :  0 = 0, N $. const., w = const. = wo. The dispersion relation for this case 
is given by 

and the ray pattern is shown schematically in figure 8(b) .  Note that a t  the turning 
point zT, defined by N ( z  = zT7)  = w,,, the wavenumber vector becomes horizontal and 
the WKB solution given by equation (2) has a weak singularity. However, as noted 
by Phillips (1966), formulating the WKB solution in the neighbourhood of xT (given 
in terms of Airy functions) reveals that within the WKB approximation total reflec- 
tion occurs a t  the turning point. 

Case C: N = const. = No,@ = const. = wo, U ( z )  + const., qz = 0. For this case, the 
dispersion relation is given by 

where one must now distinguish between waves propagating with or against the mean 
current o(z). For waves propagating with the current, a critical layer exists a t  zc, 
defined by g(z = zc) k,  = wo. At this point the WKB analysis breaks down, as the 
Taylor-Goldstein equation becomes singular, and to proceed further one needs to 
reformulate t'he problem. However, we note that, as the ray approaches the critical 
level, kz becomes much greater than k, and the group velocity becomes nearly hori- 
zontal. For waves propagat,ing against the current, a turning point exists at 

wo+ B(z,) k,  = No. 

As previously noted, the solution in the neighbourhood of this point is given in 
terms of Airy functions, and one can show that the wave totally reflects. It is important 
to recognize, however, that in this case the waves reflect due to the presence of the 

t We note here that, in general, the oscillating cylinder excites a continuum of wavenumbers. 
For conceptual simplicity, however, we will assume that the energy-containing portion of the 
spectrum may be characterized by a single dominant wavenumber k ,  (experimentally, one can 
typically discern only one line of constant phase per oscillation, thus supporting this conceptuali- 
zation). It is felt that this a.pproximation is consistent with the degree of rigonr for which this 
qualitative discussion is intended. 
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FIQURE 9. Experimentally observed ray patterns generated by an oscillating cylinder in an 
unsheared fluid. The density distribution for these runs is shown in figure 7.  (a)  W I N ,  = 0.40; 
( b )  o / N ,  = 0.62; (e) W I N ,  = 0.82. 
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FIGURE 10. Experimentally observed ray pattern generated by an oscillating cylinder in a shear 
flow. The corresponding velocity profile, measured using the hydrogen-bubble wire, is shown 
superimposed on the photograph. Maximum fluid velocity for this case is 1.65 em 8-1. 

mean shear rather than due to anomalies associated with the density structure. Both 
of these situations are depicted in figure 8 (c). 

The results of the experimentally observed wave patterns generated by an oscillat- 
ing cylinder are presented in figures 9 and 10. Figure 9 shows the results of three 
experiments, performed in quiscent fluid, which merely repeat the Mowbray & Rarity 
(1967) experiment. The ray pattern for the case @/No = 0.40 is shown in figure 9(a). 
Here, the rays look qualitatively similar to the anticipated pattern (figure 8 (a)),  
with internal-wave energy being ducted along the characteristic trajectories defined 
by equation (4). One also notes the faint presence of the ray pattern associated with 
the first harmonic of the cylinder oscillation frequency. This contribution disappears, 
however, when w/No > 0.50 (such that the frequency of the harmonic is greater than 
No), as demonstrated in figure 9 ( b ) .  Finally, figure 9(c) shows the case w/N, = 0.82, 
where one observes that a reflection occurs close to the top. Reference to the density 
profile for this case shown in figure 7 reveals that above this point w / N  > 1. Thus, 
the point where the Brunt-Vaisiila frequency changes in magnitude represents a 
turning point in the internal-wave equation, and the anticipated wave reflection 
(figure 8 ( b ) )  is clearly observed. Also seen in this figure is the wave ray emanating from 
below the cylinder which reflects off the bottom of the channel, propagates upward 
through the medium and reflects a second time at  the turning point. 

Figure 10 shows the appearance of the wave field when shear is present. In  this 
figure, the fluid is moving from right to left, with the upper layer moving faster than 
the lower layer. The velocity profile obtained simultaneously from the hydrogen- 
bubble wire is superimposed upon the figure. For this case the maximum fluid velocity 
is 1.65 cm s-l. The cylinder oscillat,ion frequency is w/N,  = 0.70 and the horizontal 
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phase speed is 1-1  cm s-1. As anticipated from the linear dispersion relation, one sees 
that the waves propagating in the same direction as the fluid motion become elongated 
by the shear and are absorbed into the mean flow close to the measured position of 
the critical level (denoted by an arrow in the velocity profile). The waves propagating 
against the current are observed to reflect a t  the position of the turning point (also 
marked by an arrow). In  general, the ray pattern looks remarkably similar to that 
anticipated from the linear int*ernal wave theory (figure 8 (c)) .  

4. Critical-level flows 
4.1. Background 

In 5 3, preliminary experiments were described which dealt qualitatively with the 
effects of shear on propagating internal waves. These results were interpreted in terms 
of steady-state, linear, inviscid internal-wave theory. However, many of the difficult 
details of the problem related to the presence of time-dependent viscous and nonlinear 
critical-level flows have not been incorporated into the analysis. In  the present section 
we will consider in somewhat more detail the dynamic interaction which occurs between 
an internal-wave field and a steady shearing motion in the presence of a critical layer. 

The effect of a critical layer upon a monochromatic disturbance has been investi- 
gated in detail by Booker & Bretherton (1967). Their analysis, which can best be 
described as a linear, unsteady, inviscid initial-value problem, reveals that for 
Richardson numbers of order unity or greater the critical layer represents a nearly 
impenetrable barrier to incoming waves. The attenuation of wave-action flux across 
the critical layer is exp (24p), where ,u = (Ri - $)*, Ri is the Richardson number and 
4 is commonly referred to as the 'phase change'. For the linear, inviscid, unsteady 
problem q5 = - z, so that even for moderate values of Ri significant attenuation occurs 
across the critical layer. The interaction of the wave field with the critical layer 
results in a transfer of momentum flux from the wave to the mean flow, a process 
commonly known as critical-layer absorption. It is significant, however, that within the 
neighbourhood of the critical layer the Booker-Bretherton analysis is asymptotically 
singular, with wave-induced horizontal velocity perturbations increasing without 
bound as tt. This result is due to the simultaneous neglect of nonlinear, viscous and 
diffusive terms in the governing equations. It is clear, however, that for an inviscid 
fluid as the velocity grows in time nonlinear effects must ultimately become manifest. 
From the Booker-Bretherton analysis one finds that this occurs on a time scale given 

t,,, = O(k,* U,+WU*), 
by 

where U, measures the mean shear, kz is the horizontal wavenumber and w,, is the 
characteristic vertical velocity of the wave forcing. If the fluid is slightly viscous then 
the viscous terms in the neighbourhood of the critical level become comparable with 
the linear inviscid terms on a time scale given by 

t, = O(k,*v-$ 

where v is the kinematic viscosity. The ratio of these two quantities is 
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which is the h parameter discussed by Maslowe (1972). The long-time evolution of the 
flow in the neighbourhood of the critical layer will depend crucially upon the order 
of A. 

When h B 1 the time required for the viscous terms to be comparable with the linear 
inviscid terms is short relative to the time required for the onset of nonlinear effects. 
Hazel (1967) has shown for the steady state, linear, viscous problem that the phase 
change across the critical layer is the same as that for the inviscid, unsteady case, 
viz - ?r, Hazel also found that negligible wave reflection occurred a t  the critical layer. 
Consequently, in this limit one might expect that for early times the critical layer 
acts to attenuate wave energy proportional to exp ( - 2 p ) ,  consistent with theBooker- 
Bretherton analysis, and continues to do so for larger t,imes, consistent with Hazel’s 
results. Whether or not nonlinearity ever becomes important in this limit is uncertain. 
It is conceivable, however, that, if h is very large, viscous dissipation could suppress 
entirely the t3  growth of the horizontal velocity perturbation. In this case virtually 
none of the incoming wave action (for moderate values of Ri) would be transmitted 
or reflected at  the critical layer for all t,ime. Instead, the wave-momentum flux would 
be absorbed into the mean flow through the gradient of the Reynolds stress, as dis- 
cussed by Jones & Houghton (1971). 

The degree to which viscosity is capable of suppressing one form of nonlinear be- 
haviour, viz that of convective instability (i.e. wave overturning), has been discussed 
by Fritts & Geller (1976). Using as a criterion of incipient breaking the point where 
the vertical gradient of the density is zero (equivalent to the velocity criterion of 
Orlanski & Bryan (1969)), they show that convective overturning in the neighbour- 
hood of the critical layer is stabilized by viscosity provided z, c Pz,, where 

Here, Cis the wave phase speed, w,, the vertical velocity at  the edge of the shear region, 
and P an O(1) constant. The implication of this viscous-stability criterion is that for 
sufficiently strong dissipation the absorption of incoming-wave momentum flux into 
the mean flow proceeds by laminar processes. For weak dissipation, however, z, may 
exceed z, and convective instability and turbulent motions may develop near the 
critical level, requiring the inclusion of nonlinear effects for an accurate description 
of the flow field. 

In the limit h < 1, the t3 growth of the horizontal velocity perturbation leads to a 
manifestation of the nonlinear effects prior to the point in time when they are sup- 
pressed by viscosity. The character of the flow field in this limit is extremely complex, 
and most of the work which has been done on this subject involves numerical com- 
putations. A notable exception, however, is the recent work of Brown & Stewartson 
(1980) who consider t’he first effects of weak nonlinearity upon the transient critical- 
layer problem forced by an internal gravity wave maintained a finite distance away. 
Their approach involves an expansion in powers of the nonlinear time scale sf(U,t) ,  
where e measures the strength of the forcing. An important result of this analysis is 
that in the high-Richardson-number limit the inclusion of weak nonlinearity has 
virtually no effect upon the transmissivity of the critical layer, but that the reflected 
wave is larger by a factor of exp (yn ) /p  than that obtained from the linear analysis. 
Unfortunately, due to the extreme complexity of the analysis, only the first harmonic 
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of the forcing disturbance could be computed. This implicitly limits the temporal 
domain over which the solution is valid. Numerical solutions for larger time (to be 
discussed) exhibit the excitation of many harmonics in the critical layer. 

That nonlinearity in the critical-layer region can lead to wave reflection has been 
demonstrated numerically by Breeding (1971). These calculations show that such 
reflections become significant as the Richardson number decreases, being about 35 yo 
of the incident wave energy for Ri E 0.5 (cf. 4 yo for linear waves). For all cases 
considered, the amplitude of the transmitted wave was O(e-p") or less. Not observed 
in Breeding's calculations, however, was any evidence of convective instability or 
turbulent breakdown in the critical layer, even though the viscous stability criterion 
of Fritts & Geller (1976) is violated for some cases. Geller, Tanaka & Fritts (1975) 
suggest that this is due to Breeding's use of a rather large eddy viscosity for com- 
putational purposes, which effectively suppresses the growth of such instabilities. 
The more recent calculations of Fritts (1979) do indeed show that nonlinearity and 
transience permit the excitation and growth of small-scale disturbances which may 
be propagating and/or vertically evanescent above and below the critical layer. 
The process may be quite complex, however, as the propagating modes carry wave 
action away from the critical layer while the evanescent modes (Kelvin-Helmholtz 
instabilities) are able to extract excess energy and stabilize the shears created by the 
incident waves. As the Kelvin-Helmholtz waves achieve significant amplitude, non- 
linear wave-wave interactions among these modes produce large perturbations in the 
lower harmonics which may excite additional radiating waves (Fritts 1979). 

All of the above nonlinear internal-wave theories are in qualitative agreement with 
the corresponding work which has been done on nonlinear time-dependent Rossby 
waves. I n  particular, Stewartson (1978) and Warn & Warn (1978) have demonstrated 
analytically the growth of harmonics in the critical layer due to nonlinear interactions, 
and have shown that the phase change across the critical layer varies on the nonlinear 
time scale d ( U , t ) .  Initially, the phase shift is -n-, consistent with linear theory 
(Dickenson 1970), but varies significantly (and a t  certain stages is positive, indicative 
of over-reflection) when the nonlinear time scale is O( 1).  At this point, the wave field 
is populated by many harmonics which become as energetic as the primary wave itself 
and effect global changes (as opposed to changes confined to the critical-level region) 
in the character of the flow field. These inviscid theories, however, never achieve a 
steady state. As time progresses the harmonic-generation process continues and 
higher and higher oscillation frequencies evolve. This result would almost certainly be 
modified by the inclusion of viscosity. The numerical computations of Beland (1978), 
for example, which include viscous dissipation, show agreement with the inviscid 
nonlinear theories for early times, but demonstrate that on a viscous time scale the 
harmonic generation is ultimately suppressed by viscosity. Asymptotically, the steacly- 
state solution of Haberman (1972) is approached. 

4.2. Critical-layer experiments 
The preceding concepts provided the motivation for a series of experiments designed 
to study under controlled laboratory conditions what roles nonlinearity, viscosity and 
transience play in the interaction of an internal gravity wave with a steady shearing 
motion. The approach taken is of a 'first-look' nature and most of the results are 
fairly qu nlitative, being presented in the form of shadowgraph images of the wave 
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field. Of specific interest in these experiments was whether any evidence of non- 
linearity could be observed in the form of wave transmission or reflection a t  the 
critical layer, harmonic generation or global changes to the mean flow. It was also 
of interest to see under what conditions convective instabilities develop a t  the critical 
layer, and whether Kelvin-Helmholtz wave growth and subsequent turbulent break- 
down leads to unsteady wave radiation. 

Two wave sources were used for these experiments, The first internal-wave generator 
was a sinusoidally corrugated boundary having a wavelength of 7.62 cm, a peak-peak 
amplitude of 1.27 cm and an overall length of 61 cm (i.e. 8 wavelengths). The wavy 
boundary was positioned 2.54 ern above the bottom of the channel. This internal- 
wave source was used to  model the generation of an internal-wave train that is nearly 
monochromatic, and of large spatial extent; i.e. the experimental analogue of the 
configuration considered by Booker & Bretherton (1967). The second internal-wave 
source was a circular cylinder having a diameter of 2.65 cm, mounted with its axis 
in the span-wise direction 5 cm above the bottom of the tank. The cylinder represents 
an internal-wave forcing which is broad-banded and spatially compact. 

Internal waves were generated by towing these objects through the test section 
in the same direction as the fluid motion. For constant towing speed (excluding start- 
up transients) the excited wave field is steady in a frame of reference moving with the 
object. In laboratory co-ordinates, these waves propagate at the towing speed. For 
most of the experiments the fluid in the lower portion of the tank was kept nearly 
quiescent ( < 1 mm s-l) and achieved a maximum velocity of 1.5-4.5 em s-l some- 
where above the centre. By adjusting the towing speed such that it was greater than 
zero but less than the maximum fluid velocity, somewhere in the tank the local fluid 
velocity was equal to the internal-wave phase speed, and a critical layer existed. 
Similarly, the existence of a critical layer could be avoided by requiring the towing 
speed to  exceed the maximum fluid velocity. 

Figure 11 shows the wave field generated by the corrugated boundary with the 
ambient fluid in a quiescent state. Here, the boundary is moving from right to left a t  
a speed of 1.12 cm s-l. I n  figure 11 ( a )  the boundary has just reached the observation 
point, which is 75 cm from the end of the test section. The light and dark regions in 
the shadowgraph image represent the lines of constant phase of the wave motion. 
One sees here a ray pattern inclined a t  roughly 30" relative to  the horizontal and 
propagating downstream with a phase speed equal to the towing velocity. I n  examining 
figure 1 1  one finds that along the boundary within the troughs recirculation regions 
exist, presumably as a result of flow separation off the lee side of the wave. This was 
an unfortunate result. I n  order to promote the generation of large-amplitude waves, 
with the hope of observing nonlinear effects, the wavy boundary was deliberately 
designed with a rather steep wave slope (ka N 0.52). The presence of recirculation 
regions, however, effectively diminished the amplitudes of the waves generated by the 
body. Moreover, the wave field generated by the boundary was not purely mono- 
chromatic, although a dominant wavelength equal to the corrugation wavelength 
still existed. One also sees a change in the character of the wave field near the end of 
the body (figure l l ( d ) )  due to end effects. 

Figure 12 presents the appearance of the wave field when the shear is turned on 
and a critical layer exists in the flow (the measured velocity profile is superimposed on 
figure 12(a)). The flow is from right to left in this figure, and the maximum fluid 
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velocity is 1.79 cm s-l. The towing speed is 1.12 cm s-l, and the measured position 
of the critical layer is denoted by an arrow in figure 12(a). The global Richardson 
number for this case, defined as Ri = N i h 2 / U :  (where No is the ambient Brunt- 
Vaisilla frequency, U, the critical-layer velocity, and h the shear-layer half-thickness) 
is about Ri = 319. In figure 12(a), the boundary has just reached the observation 
station, and one observes a wave pattern which does not appear to be trapped, but 
rather extends above the position of the critical layer. These waves are believed to be 
due to transients associated with the start-up process, as evidenced by the results 
shown in figure 13. Here the wave field generated by the boundary immediately after 
the activation of the towing system is presented. One sees here that as the boundary 
is impulsively started a broad-band disturbance is generated which is not steady in a 
reference frame moving with the body. As noted by Booker & Bretherton (1967), 
these transient waves either radiate away to infinity or are absorbed into the shear 
flow, each at the critical layer associated with their frequency. The steady-state 
pattern which emerges is shown in figure 13(e). 

Returning to an examination of figure 12, one sees that the steady (in body-fixed 
co-ordinates) wave field which develops is elongated by the shear in the neighbourhood 
of the critical layer. Figure 12 ( c )  shows the upper half of the tank to be almost devoid 
of any wave motion, indicating that the degree of transmission of wave action through 
the critical layer is negligible. There is no obvious evidence of wave reflection or har- 
monic generation at  the critical layer, nor is there wave overturning or turbulent break- 
down. Whether or not these observations are consistent with our previous discussion 
depends upon the duration of the forcing and the value of the h parameter. 

From scaling the photographs, we estimate that the peak-peak isopycnic displace- 
ment excited by the corrugated boundary is about 0.17 cm. The shear in the critical- 
layer region is roughly 0.14 s-l, and the time elapsed since the impulsive start-up is 
113s. Thus, the value of the quantity d U ,  t, i.e. the non-dimensional time scale 
measuring the onset of nonlinear effects (Stewartson 1980), is 

dU,t 2.7. 

As this is of order unity, we conclude that sufficient time has elapsed for nonlinear 
effects to have become manifest. However, computing the relative magnitude of the 
viscous and nonlinear time scales, as measured by the h parameter, we find from 
equltt'ion ( 7 )  

As h is of order unity, the conclusion one draws from these order-of-magnitude esti- 
mates is that in the experiments sufficient time has elapsed for nonlinearity to be of 
importance, but that the effects of both nonlinearity and viscosity become manifest 
at  approximately the same time. This makes the interpretation of the experimental 
results within a theoretical framework somewhat difficult, since the two effects are 
in a sense oppositely directed. As previously noted, nonlinearity acts to promote 
energy transfer away from the critical layer through the generation of harmonics, and 
viscosity acts to suppress this harmonic generation and maintain the - 7~ phase shift. 
The combined problem where both nonlinearity and viscosity are important in a 
transient critical layer has not as yet been analysed theoretically, nor has it been fully 
explored numerically. 
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The lack of any discernible turbulent motions in the critical-layer region of figure 
12 suggests that for these experimental test conditions the viscous stability criterion 
of Fritts & Geller (1976) should be satisfied. However, using the previous estimates 
for the isopycnic displacement and level of mean shear, one finds from equation (8) 
that 

zc = 2.8 cm, z ,  = 0.45 cm. 

As z, is significantly greater than z,, one would expect the critical-layer region to 
exhibit some degree of convective overturning and turbulent motions. That such 
turbulence is not observed experimentally is believed to be due to the manner in 
which the viscous effects are accounted for in the stability criterion. We herein propose 
an alternative viscous-stability criterion, based upon a wave-action approach, which 
appears to yield much better agreement with the experimental observations. 

The wave-action theory, as derived by Bretherton (1966), has been modified to  
allow for weak dissipation (Grimshaw 1974; Redekopp, private communication). 
The resulting expression is given by 

w = w’+U.k, k = k ,8+kz ( z ) r i ,  

where, to within the WKB approximation, 

From wave kinematics, one has 

ale, au -+(C,.V)Ez = Ez-. at 32 

Assuming the flow to be steady (in body-fixed co-ordinates) equations (9)-( 1 1 )  may 
be integrated, and as a criterion for convective instability we may search for the 
point 2, where the local density gradient is zero. For Ri 9 1, this occurs where 

where for simplicity we have assumed a piecewise linear distribution for the mean 
velocity field. C is the wave phase speed (equal to  the towing velocity), and the 
subscript ‘0’ refers to  conditions a t  the edge of the shear region. 

Although the above model is only a crude approximation to the experimental 
conditions (more precise comparisons could be made using numerical solutions), it 
is of interest to see how well the above criterion predicts the experimental results. 
Again using the aforementioned estimates for the displacement field and mean shear, 
one finds that, for the test conditions of figure 12, equation (12) is never satisfied, 
indicating that a position of zero density gradient does not exist in the flow. Hence, 
one would conclude that for this case the tendency toward wave overturning has been 
suppressed by viscosity, a result clearly in agreement with the observations. 
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( b )  

FIGURE 14. Wave field generated by 15 cm corrugated boundary. ( a )  Stable critical layer: 
U,, ,  N 2 cm s-1, U,,, N 3 cm s-1. ( b )  Unshble critical layer: UT,, N 4 cm s-1, U,,, N 4.5 cm s-1. 

To test the criterion more thoroughly, we attempted to  produce experimentally a 
flow which was destabilized near the critical layer. Guided by equation (12) (and 
a suggestion of D. Fritts), a second corrugated boundary was constructed having a 
wavelength of 15 cm (additionally, ka was reduced to about 0.2 to  alleviate the flow- 
separation problem). For a towing speed of 2 cm s-l and a maximum fluid velocity 
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of 3 em s-1, equation (1 2) predicts a stable critical layer. The experimental observation 
for this case, shown in figure 14 (a ) ,  corroborates this prediction. However, equation (12) 
predicts an unstable critical layer for a towing speed of 4 em s-l and a maximum fluid 
velocity of 4.5 em s-l. Figure 14 ( b )  shows the experimental results for this case, where 
a turbulent breakdown in the critical-layer region is clearly observed. We conclude, 
therefore, that the present stability criterion, based upon the viscous wave-action 
equation, leads to excellent qualitative agreement with our experimental results. 

Finally, we remark that the exponential term in equation (12) becomes important 
when $(z )  = O( 1) .  This occurs when 2 = O(Z:),  where 2: = x ,  Rii, z, being the viscous 
length scale defined by Fritts & Geller (1976). Using as a criterion for stability the 
inequality 2: > x, (with z, as defined by Fritts & Geller) one correctly predicts 
stability for figures 12 and 14(a), and instability for figure 14(b). 

In the discussion thus far presented, attention has been focused on the effects of 
shear upon a monochromatic disturbance of large horizontal extent. It is also of 
interest to study how a shearing motion interacts with a disturbance that is broad- 
banded and spatially compact. The configuration we have in mind is the wave field 
generated by a two-dimensional cylinder moving in the direction of the mean current. 
For the case of a uniform current, this corresponds to the classic lee-wave problem 
which has been investigated by numerous authors, notably Long (1955), Lyra (1943) 
and Queney (1948). For the sheared problem, various layered models have been 
proposed (cf. Turner 1973), and at least one continuous-flow problem has been investi- 
gated numerically by Sawyer (1960). The important restriction common to all of 
these analyses is the exclusion of a critical layer. To the author's knowledge, the only 
analysis which considers critical-layer effects upon the wave field generated by a 
spatially compact source is that due to Mager (1974). Essentially, Mager considers 
the Booker-Bretherton problem with the infinite wavy wall replaced by a dipole 
source. The analysis proceeds formally by applying multidimensional stationary- 
phase techniques to evaluate asymptotically the space-time inversion integrals 
associated with the linearized internal wave equation. Two results of this analysis are 
deemed important for the present study. First, Mager notes that for finite time the 
critical layer (where t'he fluid velocity equals the horizontal speed of the dipole) acts 
to absorb the energy of the incoming waves and add momentum to the mean shearing 
motion. Secondly, it  is found that within the neighbourhood of the critical layer the 
simultaneous neglect of nonlinear and viscous terms gives rise to a singularity in the 
horizontal component of velocity for infinite time. Hence, the two most important 
results of the Booker-Bretherton problem for a monochromatic disturbance also 
apply when the internal wave source is broad-banded and spatially compact. 

To proceed experimentally, a circular cylinder of diameter 2.65 em was mounted 
transversely across the tank and towed through the test section at various speeds. 
Figure 15 presents a sequence of photographs which depicts the wave field generated 
by the cylinder moving through a fluid medium which is in a quiescent state. One 
notices the presence of a turbulent wake behind the body, and a lee-wave pattern 
radiating energy into the upper regions of the tank (this is perhaps most clear in 
figure 15 ( c ) ) .  In  figure 15 (a) one also observes the region of upstream influence ahead 
of the cylinder which has been discussed by Browand & Winant (1972). 

Figure 16 shows the same sequence of photographs when shear is present and a 
critical layer exists. The velocity profile for this case is superimposed on figure 16 (a )  
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FIGURE 17. Enlargement of figure 16(c) showing detail of wave motion in the 
neighbourhood of the critical layer. 

and the position of the critical layer is denoted by an arrow. The maximum fluid velocity 
in this case is 1.48 cm s-1, and the towing speed is 0.82 cm s-1. The global Richardson 
number for this case is Ri 2: 150. One again sees that the effect of the critical layer is 
to transfer energy from the incoming waves to  the mean shearing motion (or possibly 
reflect wave energy back towards the cylinder). Virtually no wave energy is observed 
above the critical layer. For visual clarity, figure 16 (c) has been enlarged and presented 
in figure 17  so that the details of the wave motion are more readily observable. 

Comparing figures 15(d) and 16(d), one sees that a second effect of the shear is to  
increase the amplitude of the wave motions below the critical layer and to compress 
the region in space occupied by the wave field into a smaller volume. For example, in 
the unsheared case waves are visually observed to extend for almost 8 diameters 
downstream of the body. I n  the sheared case the wave field extended downstream 
for less than 4 diameters. Similarly, wave slopes in the unsheared case are typically 
ka N 0.25, as compared with ka 2: 0.55 in the sheared fluid. 

I n  summarizing the results of the critical-layer experiments, we note that none of 
the internal-wave sources used generated a wave field sufficiently energetic as to 
penetrate the critical-layer region. However, a marked change in the character of the 
critical layer was observed as the importance of the nonlinearity relative to viscous 
effects was increased. This was evidenced by the critical-layer instability and turbulent 
breakdown observed in figure 14, At present, no more definitive statement may be 
made regarding the role of nonlinearity in critical-layer phenomenon, but more 
quantitative experimentation is proceeding presently. We also conclude from these 
experiments that the qualitative features of the waves near the critical layer are 
similar for the monochromatic wave field generated by the corrugated boundary and 
the broad-banded excit,ation of the circular cylinder. 
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FIGURE 19. Wave field cornputcd using wave-action theory for the experimental test conditions 
of figurn 18. ( n )  Isopycnic displacemcnt field. (0) Raster diagram of a2p/&2. 

5. Non-critical-layer flows 
We now turn to a discussion of the results of some experiments conducted to study 

how internal waves interact with a shearing motion when ;L critical layer does not exist 
in the flow field. An important consideration in this part of the study was to  see how 
well the observed wave patterns are describable by the aforementioned wave action 
model of equations (9)-( 11). 
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FIGURE 20. Computed distribution of the local-gradient Richardson number for the 
experimental test conditions of figure 18. 

Figure 18 presents the results of an experiment performed using the 7.62 cm cor- 
rugated boundary. Here the towing speed of 2.18 cm s-l exceeds the maximum fluid 
velocity of 1.02 cm s-l, so that a critical level does not exist. For reference, the 
measured velocity profile is shown superimposed on figure 18(a). As anticipated for 
this non-critical-layer case, one observes that the shear does not act to trap the in- 
coming waves, and the effects of the wavy boundary can be seen to extend throughout 
the tank. Constant phase lines within the shear region are seen to be inclined a t  an 
angle of about 17' with respect to the horizontal. We also see that within the sheared 
region the shadowgraph image is very intense. This is due to the Doppler-shifting 
effect of the shear upon the waves, giving rise to rapid phase changes in the vertical 
direction. Such phase changes result in large variations in the local density gradient, 
to which the shadowgraph is sensitive. 

Equations (9)-( 11) were used to compute the wave field generated by the corrugated 
boundary for this non-critical-layer case. The experimental test conditions were 
modelled assuming a constant-N density distribution (a good approximation over 
most of the depth) and a smooth velocity profile that closely matched the experi- 
mentally measured velocity over most of the depth. Figure 19(a) presents the com- 
puted isopycnic displacement field induced by the passage of the body. For reference, 
the velocity profile used in the calculations is shown along with the experimentally 
measured velocity distribution. As may be seen, there is good agreement between the 
profiles except near the top (above about z = 21 cm) where the experimental profile 
exhibits a boundary-layer-like distribution. One should not anticipate very good 
agreement between the theory and the experiments above this point. Also shown in 
figure 19 ( a )  is the wave-induced horizontal velocity, which in some regions exceeds 
30 yo of the local mean velocity. 

I n  examining these analytic results, one notes that the isopycnic displacements 
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are largest near the body, but do not vary significantly through the medium. This is 
in contrast to our previous calculations near a critical layer where significant att,enua- 
tion occurs. We also see that within the shear region a longitudinal asymmetry exists, 
with slopes on the downstream side of the waves being significantly steeper than those 
on the upstream side. 

For comparison with the shadowgraph images of figure 18 (where image intensity 
is proportional to the second derivative of the density), the distribution of azp'lazz 
(p' being the perturbed density field) was computed, and is presented in figure 19(b). 
In  comparing this calculation with the data (particularly figure 18 (c)) one sees a fair 
amount of qualitative agreement. Below the shear region, the second derivatives are 
quite small, suggesting that little contrast in the shadowgraph image should be ob- 
served here. Within the sheared region, large changes in the second derivatives are 
noted, suggesting sharp changes in contrast. Furthermore, the lines of constant phase 
in this region are oriented at an angle of about 15" with respect to the horizontal, 
quite consistent with experimental results. Above the sheared region, the comparison 
with the experimental results is not very good, but this is most likely due to variations 
in N which existed here coupled with the poor approximation to the measured velocity 
profile. 

A further calculation which is also of some use is the effect of the wave-induced 
motions upon the local-gradient Richardson number. Figure 20 presents the vertical 
distribution of the quantity 

for the test conditions in figure IS. For comparison, the ambient Richardson-number 
distribution (i.e. in the absence of waves) is also presented. When there are no waves 
present, the Richardson number in the centre of the channel is about 570. The wave- 
induced contribution is seen to modify this distribution substantially, effecting more 
than a three-orders-of-magnitude reduction in the local Richardson number in some 
regions. Although the degree to which these calculations are quantitatively correct 
is somewhat questionable, the general conclusion may be made that the wave-induced 
part of the flow field is not small, and can significantly alter the distribution of the 
local-gradient Richardson number. 

The results of these calculations, particularly the longitudinal asymmetry of the 
isopycnic displacements coupled with the dramatic alteration of the local-gradient 
Richardson number, are very suggestive of the possibility that even in the absence 
of a critical layer a sufficiently strong internal-wave/shear interaction may lead to 
the same convective overturning of waves noted in figure 14 and/or the growth of 
dynamical Kelvin-Helmholtz instabilities. We note from the work of Thorpe (1978), 
for example, that the slope of an internal wave a t  the point of incipient breaking may 
be significantly reduced by the presence of shear. Thorpe also observed a co-existence 
of turbulent motions induced by wave overturning and Kelvin-Helmholtz billows. 
Such wave-induced turbulent mixing would have a profound effect upon vertical 
diffusion processes in the ocean, although for realistic oceanic conditions the import- 
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FIGURE 22. Enlargement of figure 21 (c) showing details of off-track turbulence generation. 

ance of convective instability relative to  Kelvin-Helmholtz induced turbulent mixing 
has not been fully assessed. 

To pursue further the possibility of wave-induced turbulence in the absence of a 
critical layer, experiments were performed using the circular cylinder as the wave 
source (which tends to  excite a fairly energetic wave field). Figure 21 presents the 
observed wave field generated by the cylinder when the towing speed exceeds the 
maximum fluid velocity so that no critical layer exists in the flow. The maximum fluid 
velocity for this case is about 2.9 cm s-l, and the towing speed is 3.95 cm s-l. The 
global Richardson number is Ri 2: 150. The results of this experiment were some- 
what surprising. As anticipated for this non-critical-layer case, the wave field is not 
trapped by the shear, and waves are seen to extend to  the top of the tank. What is 
interesting, however, is the appearance of fine-scale turbulence downstream of the 
cylinder a t  vertical locations several diameters above the track of the cylinder motion. 
From an enlargement of figure 21 (c), shown in figure 22, one sees that the presence 
of these turbulent motions appears to  be highly correlated with the lee-wave pattern 
generated by the cylinder. To show that the existence of this turbulence production 
is intimately related to the presence of shear, the above experiment was repeated with 
the fluid in a quiescent state. The results, depicted in figure 23, show none of the afore- 
ment#ioned off-track turbulence generation. One possible inference which could be 
drawn from these results is that  somehow the lee-wave pattern radiating away from 
the body triggers an instability which subsequently grows to significant amplitude 
and degrades into turbulence. Such a wave-induced instability has been previously 
proposed as a mechanism for the generation of turbulent mixing in a marginally stable 
oceanic thermocline (cf. Woods 1968). What is somewhat surprising in the present 
experiment is that, in the absence of any wave motion the minimum Richardson 
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FIGURE 24. Wave pattern generated by an airfoil section moving through a shear flow when no 
critical layer exists. Measured velocity profile is shown superimposed on the figure, where the 
horizontal tick marks correspond to 0.5 cm ssl. Towing speed for this case is 3.1 ern s-l. 

number is extremely large (Ri 21 150) when compared to the Richardson number 
normally required for dynamic instability, Ri = 0.25, or convective instability Ri < 0. 
Clearly, if the instability is triggered by the wave motion, the wave-induced pertur- 
bations must (at least locally) dominate the flow in order that the stability boundary 
be transcended. Recalling, however, the previously presented Richardson-number 
calculations (figure 19), it is not unreasonable to expect that the wave-induced part 
of the flow field may be large enough to cause local instability. 

T o  investigate the nature of this instability further, a brief experiment was per- 
formed to measure the wave-induced velocity and density perturbations in a region 
where local instability is observed. I n  order to reduce the effect of the large turbulent 
wake of the cylinder, an airfoil section (NACA 0018, chord length = 15 cm) was used. 
Quantitative measurements were made using a hot-film anemometer and a conduc- 
tivity probe positioned 10.7 cm above the airfoil centre-line (the probe configuration 
and measured velocity profile for this experiment have been presented previously in 
figure 3). The sensors were fixed in laboratory co-ordinates, so that as the waves 
propagated behind the body, a measure of the horizontal structure of the flow field 
a t  a given vertical position was obtained. Figure 24 shows the shadowgraph image 
obtained at  the point in time when a phase front just reached the probes. The airfoil 
is being towed a t  3.1 cm s-l and, from the velocity profile superimposed on this figure, 
the maximum fluid velocity was 2.46 ern s-l. As was observed for the cylinder experi- 
ments, turbulence highly correlated with the wave field exists above the airfoil. 
The ambient global Richardson number for this case was Ri = 183. Figure 25 presents 
time traces of the velocity and density fields measured for this case. An arrow denotes 
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Density trace , p ' =  0.006 
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Photograph shown in 
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FIGURE 25. Velocity and density measurements obtained in the wave field 
generated by the moving airfoil shown in figure 24. 

the point in time when the photograph of figure 24 was taken. The maximum wave- 
induced density perturbation is measured to be about p' = 0.006 g (3111-3, corres- 
ponding to  a peak-peak displacement of 1.02 cm. From the velocity trace one finds 
that a maximum velocity of 3.25 cm s-l is observed. The ambient fluid velocity a t  
this point is 1.25 cm s-l, and the towing speed (and hence the wave phase speed) is 
3-1 cm s-l. At this location, then, the local fluid velocity slightly exceeds the phase 
speed by 0-15 cm s-l. This is exactly t,he criterion required for the existence of the 
wave-overturning phenomenon discussed by Orlanski & Bryan (1969). Additionally, 
we note from scaling the photograph that the product of the vertical wavenumber 
times the wave amplitude is roughly k#a E 0.9 (a being equal to half the peak-peak 
amplitude) which is also very close to the criterion for convective overturning pro- 
posed by Orlanski (1972). We conclude, therefore, that the turbulent motions observed 
a t  the phase front in this figure are most likely the result of an instability which is 
convective in nature. 

One may also use these data to estimate the wave effect on the local-gradient 
Richardson number. However, the measurements (which describe the horizontal 
distribution of the flow field) are not directly applicable, as one really needs information 
about the vertical gradients. If one is willing to  assume,? though, that 

a l a  
ax tan 8 ax' 

where 8 is the angle of the constant-phase line with respect to the horizontal, one may 
use the measured data to estimate the local gradient Richardson number. Determining 
8 from the shadowgraph image, the minimum-gradient Richardson number is mea- 
sured to be Ri = 0.60. Considering that the ambient value of the Richardson number 
is Ri = 180, we see that the wave-induced motion has a profound effect upon the local 
stability of the system. 

not be valid. 

-= - -  

In a flow field where overturning waves are present, Irowever, such an approximation may 
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6. Summary 
The results of an experimental investigation dealing with the interaction of internal 

waves with a mean shearing motion have been presented. The first experiments 
extended the work of Mowbray & Rarity (1967) to examine the effects of density and 
velocity structure upon the wave field generated by an oscillating cylinder. The results, 
which were interpreted in terms of a WKB approximation to the linearized internal 
wave equation, showed that waves may be reflected or absorbed by the presence of 
shear, depending upon the direction of propagation relative to that of the fluid. 

A second series of experiments dealt with the wave pattern generated by a wavy 
boundary in the presence of a critical layer, a problem considered theoretically by 
Booker & Bretherton (1967). Of particular concern was the determination of 
whether the effects on nonlinearity anticipated from the recent work of Stewartson 
(1978), Brown & Stewartson (1980), Warn & Warn (1978) and Fritts (1978, 1979) 
could be observed experimentally. It was concluded for the present experiment that, 
if nonlinearity manifested in the form of harmonic generation, critical-layer trans- 
mission or reflection was important, its effects were masked by the simultaneous 
importance of viscosity. One nonlinear effect which was observed, however, was the 
turbulence induced by a convective instability near the critical layer. A stability 
criterion, based upon the viscous wave-action equation, correctly predicted the 
boundary between stable- and unstable-critical-level flows. Experiments were also 
conducted using the wavy boundary to investigate the wave field in a non-critical- 
layer case. The results were compared with calculations based upon the conservation 
of wave-action flux, and good qualitative agreement was observed. These calculations 
also indicated that the wave-induced perturbations can substantially alter the local- 
gradient Richardson-number distribution. 

Finally, experimental results on the wave field generated by a compact source were 
presented. The cylinder results show that, as in the wavy-wall experiments, the effect 
of shear on a broad-banded spatially compact source is to trap wave energy below the 
critical layer. For the non-critical-layer case, where the towing speed exceeded the 
maximum fluid velocity, an interesting result was obtained. Turbulent motions highly 
correlated with the wave field were observed at vertical positions several body dia- 
meters removed from the track of the cylinder motion. Subsequent velocity and 
density measurements, made behind an airfoil section where similar phenomena were 
observed, revealed that the wave-induced perturbations can effect reductions in the 
local Richardson number to such an extent that dynamic instabilities may develop. 
These measurements are also suggestive of the possibility that wave overturning may 
be responsible for the observed turbulence production. Such wave-induced turbulence 
is almost certain to be significant with regard to mixing processes in both the ocean 
and the atmosphere, and further experimentation designed to address quantitatively 
some of t'he important aspects of this problem is presently under way. 
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